Abstract

Standard radiation detection techniques currently employed by portal monitors at international borders and ports are not very sensitive to detecting emanating radiation from shielded nuclear materials (SNM) like high-Z radioactive materials (U, Pu). Muon Tomography based on the measurement of multiple scattering of atmospheric cosmic rays by muons traversing cargo or vehicles is a promising technique for solving this problem. The technique uses the information on the angle deviation of the cosmic ray muons to perform a 3D tomography reconstruction of the high-Z material inside the probed volume.

A Muon Tomography Station (MTS) requires large-area position-sensitive detectors with excellent spatial resolution for the tracking of incoming and outgoing cosmic ray muons. Large-area Micro Pattern Gaseous Detector (MPGD) technology such as the Gas Electron Multiplier (GEM) detectors are the perfect candidate for this application. We have built a first MTS prototype based on medium-size GEM detectors and took cosmic data for targets with various Z values inside the MTS volume. We discuss construction and commissioning of the GEM detectors and report preliminary results for target detection and imaging from cosmic data taken with the MTS prototype. We also discuss plans to build large-area high-performance GEM detector to be mounted in a 1m x 1m MTS prototype and the current development by the RD51 collaboration of final electronics for a full MTS readout based on the APV25 chip.

Muon Tomography Principle

![Muon Tomography Principle](image)

Muons: created in the upper atmosphere by cosmic rays Flux: ~ 1 muon min⁻¹cm⁻² for horizontal detectors Average energy: 4 GeV Interaction: Multiple Coulomb Scattering

GEM Detectors Commissioning

Detectors: Eight 30cm x 30cm 30 Triple GEMs
Readout: 2D x-y cartesian strip readout
Gas: Argon/CO₂ 70:30
HV divider board

Muon Tomography Station (MTS)

![Muon Tomography Station (MTS)](image)

Data Acquisition System

![Data Acquisition System](image)

DAQ hardware:
- NIM crate: HV power for the GEMs, LV & control signals for the FE cards
- VME crate:
 - Sequencer (Caen V551) for trigger
 - FE & CRAMS control signals
 - 4 CRAMS (Caen V550 8-bit ADCs), Data signal from the Gassiplex FE

Labview DAQ Software:
- Online:
 - DAQ VME hardware
 - Pedestal runs
- Offline:
 - Pedestal subtraction
 - Strip number correction
 - Performance analysis

Performance of the MTS

![Performance of the MTS](image)

Future Planned Developments

The next step is to fully instrument all GEM detectors with the final electronics and mount them in a cubic-foot size MT station that also features side detectors. This will increase the rate of muons available for testing the MT station. We plan on constructing and operating such a station to experimentally investigate more advanced scenarios, e.g., shielded scenarios and scenarios with vertical clutter.

Conclusions

We assembled a total of eight 30cm x 30cm GEM detectors at the GDD lab at CERN. Tests with X-rays and cosmic ray muons showed expected basic detector performance and similar behavior among the detectors. We have built and operated a first minimal MT station prototype using four of these GEM detectors and temporary electronics for reading out 1024 channels (~15 kSamp) as a first demonstration of using GEM detectors for muon tomography. With a few thousand cosmic ray muons recorded with the station, we are able to detect and image several medium-Z and high-Z targets (Fe, Pb, Ta) with fairly small (~ cubic-inch) volumes using our simple point-of-closest-approach reconstruction algorithm. This demonstrates that GEM-based muon tomography is in principle possible.

Acknowledgments & Disclaimers

We thank L. Roplewski (GDD, CERN), E. Ferrer-Ribas and M. Titov (CEA Saclay, France) and T. Geralis (NCSR Democritos, Greece) for their help and technical support with the detector construction and data acquisition system. This material is based upon work supported in part by the U.S. Department of Homeland Security under Grant Award Number 2007-DN-077-ER0006-02. The views and conclusions contained in this document are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the U.S. Department of Homeland Security.